salju putih

Sejarah Hidup Johan Carl Friedrich Gauss




                                                Sejarah Hidup Johan carl friedrich gauss
 

Johann Carl Friedrich Gauss (juga panggil Gauss),  lahir di Braunschweig, 30 April 1777 – meninggal di Göttingen, 23 Februari 1855 pada umur 77 tahun). Ia adalah matematikawan, astronom, dan fisikawan Jerman yang memberikan beragam kontribusi; ia dipandang sebagai salah satu matematikawan terbesar sepanjang masa selain Archimedes dan Isaac Newton.
Dilahirkan di Braunschweig, Jerman, saat umurnya belum genap 3 tahun, ia telah mampu mengoreksi kesalahan daftar gaji tukang batu ayahnya. Menurut sebuah cerita, pada umur 10 tahun, ia membuat gurunya terkagum-kagum dengan memberikan rumus untuk menghitung jumlah suatu deret aritmetika berupa penghitungan deret 1+2+3+...+100. Di sekolahnya, Gauss dikenal merupakan anak yang dapat dikatakan seorang pembuat masalah, namun juga merupakan orang yang memiliki kemampuan memecahkan masalah. Pada saat itu, gurunya memberikan soal sulit pada anak muridnya yang juga termasuk Gauss di dalamnya. Saat itu Gauss terbilang masih muda untuk menyelesaikan soal perhitungan 1+2+3+4+...+100. Gurunya bermaksud memberikan soal ini agar sang guru tak perlu mengajar dan dapat beristirahat. Dia yakin bahwa intuk menyelesaikan soal tersebut, butuh waktu lama. Namun, ternyata Gauss berhasil memcahkannya dalam waktu yang cepat. Sang guru pun terkagum-kagum dengan hasil pemecahan Gauss yang cepat dan tepat.Gauss menciptakan cara untuk menghitung deret aritmetika. Cara yang Gauss ciptakan untuk menghitung deret aritmetika tersebut memang telah disederhanakan menjadi rumus " Dn= n/2(U1+Un)" yang lebih sederhana, namun tetap berdasarkan cara yang ditemukan Gauss sendiri. Meski cerita ini hampir sepenuhnya benar, soal yang diberikan gurunya sebenarnya lebih sulit dari itu.
Gauss adalah seorang anak ajaib. Ia membuat penemuan matematika pertamanya saat masih remaja. Ia menyelesaikan ilmu hitung Disquisitiones, magnum opus, pada tahun 1798 pada usia 21, meskipun tidak dipublikasikan sampai 1801.
Kemampuan intelektual Gauss menarik perhatian dari Duke of Brunswick, yang mengirimnya ke Collegium Carolinum (sekarang Braunschweig University of Technology ), yang dihadiri 1792-1795, dan ke Universitas Göttingen 1795-1798. Sementara di universitas, Gauss secara mandiri menemukan kembali beberapa teorema penting
Gauss melakukan penelitiannya di observatorium astronomi di gottingen, kota kecil di jantung jerman. Yang dengan segera menciptakan tradisi matematis yang membuat Gottingen dan universitasnya menjadi pusat matematikadunia.
Karya pertama setelah lulus
Di universitas Gottingen, karya Gauss dapat diperbandingkan dengan karya para matematikawan lain dan hasilnya memang mencolok. Semakin dia membandingkan akhirnya dia menyadari bahwa dia adalah seorang matematikawan besar. Gauss selalu menyimpan semua penemuannya dan menyesal bahwa tidak seorangpun dapat berdiskusi tentang teori-teori yang menarik hatinya. Salah seorang teman baiknya di universitas adalah Wolfgang Bolyai, bangsawan Hongaria yang kelak anak lakinya [Janos Bolyai] menemukan geometrinon-Euclidian.
Disertasi
Nama Gauss mulai terkenal sehingga merencanakan menggunakan bahan-bahan dalam buku itu untuk disertasi doktoral, namun pihak penerbit menolak. Dicari judul lain sebelum akhirnya didapat judul panjang, Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus revolvi posse yang terbit lebih awal, tahun 1799. Isi tesis doktoral adalah membuktikan theorema dasar aljabar – membuktikan bahwa polinomial pangkat n (kuadrat adalah pangkat 2 dan kubik adalah pangkat 3, quartik adalah pangkat 4 dan seterusnya) mempunyai (hasil) akar pangkat n juga. Hal tersebut baru valid (sahih) apabila perlakuan terhadap bilangan imajiner sama seperti bilangan riil.
Untuk bilangan riil:
 x4 + 2x³ + 9 = 0 akan mempunyai 4 hasil (bilangan) akar
x³ + x² + 2x + 4 = 0 akan mempunyai 3 hasil (bilangan) akar.
Untuk bilangan imajiner:
x² + 4 = 0 tidak dapat diselesaikan apabila bilangan riil yang dipakai.

Hasil yang diperoleh adalah x = ± √-4, atau x = ± 2√-1. Seperti dinyatakan oleh Euler bahwa ekspresi √- 1 dan √-2 tidak dimungkinkan atau merupakan bilangan-bilangan imajiner, karena akar bilangan adalah negatif; sesuatu tidak ada apa-apa (nothing) karena bukan bilangan dan bukan pula bilangan yang lebih besar dari sesuatu tidak ada (nothing).* Gauss menyatakan bahwa bilangan negatif juga termasuk dalam sistim bilangan.
Tidak lama setelah terbitnya Disquisitiones Arithmeticae, Gauss menjadi pengajar dan menulis makalah singkat berjudul The Metaphysics of Mathematics, yang disebut sebagai salah satu uraian singkat dan jelas yang pernah ditulis tentang dasar-dasar matematika. Penyederhanaan ini dimaksudkan pada keyakinan bahwa akan memudahkan mahasiswa belajar matematika.
Sistem bilangan
Gauss membagi bilangan dimulai dari bilangan kompleks. Dari bilangan kompleks itu kemudian diturunkan bilangan-bilangan lain. Bilangan riil, sebagai contoh, sebenarnya adalah bilangan dalam bentuk a + bi, dimana a adalah bilangan riil dan b = nol; bilangan imajiner adalah bilangan kompleks yang mempunyai bentuk sama dengan a = nol dan b adalah bilangan riil. Untuk memudahkan penjelasan diberikan diagram di bawah ini.
Keberadaan bilangan kompleks tidak hanya mempengaruhi aljabar, tapi juga berdampak pada analisis dan geometri. Teori fungsi dari bilangan kompleks kemudian dikembangkan; geometri diferensial [angka] mutlak dan analisis vektor – sangat vital bagi sains modern – berkembang sehingga dikenal bilangan-bilangan setengah-riil dan setengah-imajiner.
Bilangan kompleks dapat ditambah, dikurang, dikali, dibagi, dipangkat atau dicari hasil akarnya dalam kasus dimana bilangan kompleks dalam bentuk a + bi – meskipun a, b atau keduanya mungkin sama dengan nol. Bilangan baru dapat dibuat untuk melakukan operasi terhadap bilangan-bilangan kompleks. Sistem bilangan aljabar lama sekarang tertutup, untuk penggunaan bilangan-bilangan kompleks, semua bentuk persamaan dapat diselesaikan dan semua jenis operasi dapat dilakukan. Prestasi penutupan sistem matematika ** ini adalah misi manusia terus mencari-cari sejak jamanPythagoras.
Pencarian ini sama seperti pencarian dalam bidang sains lainnya. Dalam bidang kimia, sebagai contoh, ditemukan sistem berkala unsur mulai dari Hidrogen (nomor 1) sampai dengan Lawrensium (nomor 103). Begitu pula dalam bidang fisika, setelah ditemukan atom, ternyata dapat dipilah lagi menjadi elektron, proton dan neutron.
Deret tidak terhingga yang terus membesar seperti 1 + 2 + 4 + 8 + …menggoda hati Gauss, yaitu bagaimana menghitung eskpresi matematika (fungsi) untuk menggambarkannya. Pada analis sebelumnya tidak dapat menjelaskan misteri ini, proses menuju ketakterhinggaan. Tidak puas dengan apa yang tertulis pada buku teks, Gauss menyiapkan pembuktian. Awal yang membuat Gauss berkutat dengan analisis. Metode Gauss ini mengubah seluruh aspek matematika.


Perkembangan Kalkulus




 Perkembangan Kalkulus

2.1 Pengertian Kalkulus
Kalkulus (Bahasa Latin: calculus, artinya "batu kecil", untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu yang mempelajari perubahan, sebagaimana geometri yang mempelajari bentuk dan aljabar yang mempelajari operasi dan penerapannya untuk memecahkan persamaan. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.
Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus. Contoh cabang kalkulus yang lain adalah kalkulus proposisional, kalkulus variasi, kalkulus lambda, dan kalkulus proses. Pelajaran kalkulus adalah pintu gerbang menuju pelajaran matematika lainnya yang lebih tinggi, yang khusus mempelajari fungsi dan limit, yang secara umum dinamakan analisis matematika

2.2 Sejarah Kalkulus
Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan, dan zaman modern. Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada Papirus Moskwa Mesir (1800 SM) di mana orang Mesir menghitung volume piramida terpancung. Archimedes mengembangkan pemikiran ini lebih jauh dan menciptakan heuristik yang menyerupai kalkulus integral.
Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil takterhingga pada tahun 499 dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar. Persamaan ini kemudian mengantar Bhaskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari “Teorema Rolle“. Sekitar tahun 1000, matematikawan Irak Ibn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral. Pada abad ke-12, seorang Persia Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial.  Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari mazhab astronomi dan matematika Kerala, menjelaskan kasus khusus dari.. deret Taylor, yang dituliskan dalam teks Yuktibhasa.
Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis danIsaac Barrow memberikan terobosan dalam kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668.
Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton mengaplikasikan kalkulus secara umum ke bidang fisikasementara Leibniz mengembangkan notasi-notasi kalkulus yang banyak digunakan sekarang.
Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan Newton kepada beberapa anggota dari Royal Society.
Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika ini sebagai kalkulus, sedangkan Newton menamakannya “The science of fluxions“.
Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus. Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia terus memberikan kontribusi terhadap perkembangan kalkulus

Pengeoperasian Aljabar

1. Suku-Suku Pembentuk Dalam Aljabar
Koefisien adalah bilangan yang diikuti variabel dibelakangnya pada tiap-tiap suku. Contoh:
5x , artinya 5 adalah koefisien x
8y , artinya 8 adalah koefisien y
a2, artinya 1 adalah koefisien a2
Variabel adalah lambang dari suatu bilangan yang belum diketahui nilainya. Variabel disimbolkan dengan huruf kecil, misalnya; a, b, c, …. , x, y, z.
Contoh:
3p, artinya p adalah variabel dari 3
4q, artinya q adalah variabel dari 4
Konstanta merupakan bilangan tetap yang tidak memiliki variabel.
Contoh konstanta dari operasi berikut:
5x + 2xy2 + y – 35
Konstanta dari operasi diatas adalah (-35).
Suku adalah bagian dari bentuk aljabar yang dipisahkan oleh operasi jumlah atau selisih. Memuat variabel beserta koefisiennya atau hanya konstanta.
Bentuk aljabar dengan dua suku disebut suku dua.
Contoh: 5x – 2y, a + b2
Bentuk aljabar dengan lebih dari dua suku disebut suku banyak (polinom).
Contoh: a2 + 4b – c, 6x + 1 – 3y + xy2

2. Klasifikasi dari Aljabar
A.    Aljabar Elementer
Aljabar elementer adalah bentuk paling dasar dari Aljabar, yang diajarkan pada siswa yang belum mempunyai pengetahuan Matematika apapun selain dari pada Aritmatika Dasar. Meskipun seperti dalam Aritmatika, di mana bilangan dan operasi Aritmatika (seperti +, -, x, ) muncul juga dalam aljabar, tetapi disini bilangan seringkali hanya dinotasikan dengan symbol (seperti a, x, y, ). Hal ini sangat penting sebab: hal ini mengijinkan kita menurunkan rumus umum dari aturan Aritmatika (seperti a + b = b + a untuk semua a dan b), dan selanjutnya merupakan langkah pertama untuk penelusuran yang sistematik terhadap sifat-sifat sitem bilangan riil.
Dengan menggunakan symbol, alih-alih menggunakan bilangan secara langsung, mengijinkan kita untuk membangun persamaan matematika yang mengandung variable yang tidak diketahui (sebagai contoh “Carilah bilangan x yang memenuhi persamaan 3x+1=10”) . Hal ini juga mengijinkan kita untukmembuat relasi fungsional dari rumus-rumus matematika tersebut (sebagai contoh “Jika anda mnjual x tiket, kemudian anda mendapat untung 3x -10 rupiah, dapat dituliskan sebagaif(x) = 3x – 10, dimana f adalah fungsi dan x adalah bilangan dimana fungsi f bekerja”).

B.     Aljabar Abstrak
Aljabar abstrak kadang-kadang disebut Aljabar Modern, yang mempelajari Stuktur Aljabar semacam Grup, ring dan Medan (fields) yang didefinisikan dan diajarkan secara aksiomatis.

C.     Aljabar Linier
Yang mempelajari sifat-sifat khusus dari Ruang Vektor (termasuk Matrik).

D.    Aljabar Universal
Yang mempelajari sifat-sifat bersama dari semua Stuktur aljabar.

3. Menyelesaikan Operasi Aljabar
Pada dasarnya, sifat – sifat penjumlahan dan pengurangan yang berlaku pada bilangan riil, berlaku juga untuk penjumlahan dan pengurangan pada bentuk–bentuk aljabar, sebagai berikut:
1.    Sifat Komutatif
a + b = b + a, dengan a  dan b bilangan riil.
2.    Sifat Asosiatif
  (a + b) + c = a + (b + c), dengan a, b dan c  bilangan riil.
3.      Sifat Distributif
a (b + c) = ab + ac, dengan a, b dan c  bilangan riil.

A.       Pengurangan pada Aljabar
Berikut adalah contoh operasi pengurangan dalam aljabar
a.       (4p²-10p-5) – (8p² + 10p + 15)
Jawab :
(4p²-10p-5) – (8p² + 10p + 15)
= 4p² – 8p² – 10p – 10p – 5 -15
= 4p² – 20p -20

b.      (10p – 8) – (8p -10)
Jawab :
10p – 8 – 8p + 10
= 2p + 2

B.  Penjumlahan pada Aljabar
Berikut adalah contoh soal-soal penjumlahan yang diterapkan kepada bentuk aljabar.
a.       (10x² + 6xy – 12) + (-4x²- 2xy + 10)
Jawab :
10x2 + (-4x2) + 6xy – 2xy -12 + 10
= 6x2 + 4xy -2
b.      7x + 3x = 10x
c.       8x2 + 5x2 = 13 x2
d.      –y2 + 7y2 = 6y2      

C.  Perkalian Aljabar
1. Perkalian suku satu dengan suku dua
Contoh soal:
a) 2(x + 3)                  b) –4(9 – y)                c) x(y + 5)             d) –9p(5p – 2q)
Jawab:
a)      2(x + 3) = 2x + 6
b)      –4(9 – y) = –36 + 4y
c)      x(y + 5) = xy + 5x
d)     –9p(5p – 2q) = –45p2 + 18pq

2. Perkalian suku dua dengan suku dua
Contoh soal :
a. (2x + 1)2 =
b. (3x + 2)(3x + 1) =
c. (x-5)(2x-3) =
d. (x – 2)(x – 2) =
e. (x + 1)(x + 1) =
 Jawab :
a. (2x + 1)2 = (2x + 1)(2x + 1) = 4x2 + 4x + 1
b. (3x +2)(3x + 1) = 9x2 + 3x + 6x + 1 = 9x2 + 9x + 1
c.  (x-5)(2x-3) = 2x2-3x-10x + 15 = 2x2 - 13x +15
 d. (x – 2)(x – 2) = x2 – 2x – 2x + 4 = x2 – 4x + 4
 e.  (x + 1)(x+1) = x2 + x + x + 1 = x2 + 2x + 1

D.  Pembagian Aljabar
Contoh soal :
a. 3x : 3 =                                            b. 6x2 : 2x =
c. 8xyz : 4x =                                      d. 10pqr : 2p =
Jawab :
a. 3x : 3 = x                                                     c. 8xyz : 4x = 2yz
b. 6x2 : 2x = 3x                                                d. 10pqr : 2p = 5qr

E.   Memfaktorkan bentuk Aljabar
Berikut adalah beberapa contoh gambar yang menunjukkan penyelesaian dari pemfaktoran bentuk-bentuk aljabar.
a. x2 + 5x + 6 = (x + 2) (x + 3)
b.  x2 – 3x + 2 = (x+1) (x+2)

SOFTWARE GRAPHMATICA

PEMBAHASAN 2.1        PENGETIAN GRAPHMATICA                                     Graphmatica merupakan software yang d...